
SimuCell : Paint your cells

 1

1
SimuCell Documentation

SimCell Overview
Introduction
SimuCell is an open-source framework for specifying and rendering realistic microscopy
images containing diverse cell phenotypes, heterogeneous populations, and
microenvironmental effects.

SimuCell can generate heterogeneous cellular populations composed of diverse cell
types. Each cell type (i.e. subpopulation) can be defined independently by specifying
models for cell and organelle shape, and distributions of markers over these shapes.
Models are typically algorithmic, but there is support for rendering produced by other
tools, such as the highly realistic models learned from image data by CellOrganizer (via
the new SLML markup language).

SimuCell allows users to specify interdependencies among biomarker-, cell-, and
population-level phenotypes. For example, a marker’s cellular distribution can be
affected by the cell’s microenvironment or the localization pattern of another marker.
These definable image properties are accessible to users either via a novel scripting
syntax built on top of MATLAB, or through the graphical user interface, while
intermediate results can define further “ground truths” (e.g. cell boundaries can be used
to validate segmentation algorithms).

SimuCell was designed to be easily extensible, providing a standard framework for
defining new plugins. Users interested in adding novel phenotypes to SimuCell’s palette
can typically do so by writing just a few lines of code, in part due to MATLAB’s
extensive library of functions.

SimuCell : Paint your cells

 2

Taken together, SimuCell allows the definition of a broad range of phenotypes,
encompassing highly non-trivial population-level effects such as cell-type heterogeneity
or local cell-density effects.

Overall
To produce an image, SimuCell requires you to define several elements:

• Subpopulation(s)
• Object/Shape(s) (via shape plugins)
• Marker(s) (via marker plugins)
• Other parameters like placement, artifact, overlapping and compositing (other

plugins)

Figure 1 - SimuCell layout process (Blue arrows and images indicate interdependencies for

specific example: (i) nuclear shape depends on cell shape; (ii-iii) cell microenvironment
(number of nearby cells) affects marker 1 distribution; and (iv) marker 3 distribution

depends on marker 2’s distribution. Subpopulations

SimuCell allows you to define multiple cell types (each termed a subpopulation) and
specify the fractions of cells belonging to the different subpopulation per image. As
shown in Figure 1, for each subpopulation, you will have to define objects/shape, markers
and so on.

Objects/Shapes

Objects/shapes are basically the cell components you want to draw in your images.
Examples of objects include cytoplasm, nucleus, lipid droplet, nuclear body. Each object
in a cell is described, and subsequently rendered, using its own model (i.e. the appropriate
plugin). You are required to choose the appropriate plugin for your object, and set the
correct model parameters (default values are a good starting point).

Each object is rendered independently, so there needs to be some way to connect the
different objects in a cell to place them close to each other. This connection is done by

SimuCell : Paint your cells

 3

choosing appropriate models (models allow one object to depend on another). For
example, to ensure that the nucleus is inside the cytoplasm you could pick a nucleus
model that places it inside an already defined cytoplasm. Alternately, you could pick a
nucleus model that draws nuclei independently, but then you need to define a cytoplasmic
model that draws the cytoplasm around the nucleus.

In this basic tutorial, you will see that the model Elliptical cytoplasm is used to define the
cytoplasm and by pointing the model parameter (Centered Around) to the nucleus you
can connect the two objects nucleus and cytoplasm.

Thus, there are two kinds of shape models: ones that don’t depend on other
objects/shapes (these anchor the cell) and models that depends on other shapes (these will
effectively draw the other shapes around the anchor). For any subpopulation, you will
have one (and only one) model of the first kind, while all the other models must be
depend on each other in some way.

Markers

Next, you need to define the markers. First you add/declare the markers that you want
rendered in the image. Then SimuCell requires independent definition of markers (in
terms of how they will be rendered) for each defined object of each subpopulation giving
a relationship matrix between objects/shapes and markers like the following one:

 Marker 1 Marker 2 Marker 3

Nucleus - -

Cytoplasm -

As you can see, all the markers have to be defined by object, although you don’t need to
define all the pair object/marker (in our example, Marker 1 is present only in the nucleus
and not in the cytoplasm rather than Marker 2 and 3 are only present in the cytoplasm).

In contrast to shape each marker-object pair is defined using a sequence of elementary
operations. There are basically two kinds of operation:

• Operations that set the basic intensity/level of the marker on the object: An operation
of this kind should be the first in your sequence of operations. Examples include
Constant marker level operation and Cell Density Dependent Marker Level which
both set the intensity of all pixels in the shape to a constant level. However, in the
case of the former this level is sampled from a normal distribution while the latter
chooses a level based on the local cell density.

• Operations that redistribute the initial marker setting: These form the subsequent
operations. Examples are Linear marker gradient, which scales the output of the
previous operation by an intensity gradient or Perlin Texture which adds noise to the
result of the previous operation,

Here is a quick summary of the marker plugin operations currently available by default in
SimuCell.

Angular marker Produce an angular dependence (gradient) of the marker level

SimuCell : Paint your cells

 4

gradient

Cell density
dependent marker

Operation that sets the marker level in an object, based on the local
cell density.

Constant
dependent marker
level

Marker is set to a constant level on an object, with this level being
determined by distribution of another Marker/Object pair (e.g.
cytoplasm intensity of Marker 1 is decided by the nuclear density
of Marker 2)

Constant marker
level

Constant marker level with no dependencies. Also, it will change
from cell to cell.

Distance to edge
marker level

Marker level at a pixel will depend on its distance to the edge of
the object

Distance to shape
marker gradient

Marker level at a pixel will depend on its distance to an object in
the same cell

Linear marker
gradient

Marker level will decrease/increase following a linear gradient

Locally dependent
marker level

Level of the marker at a pixel depends of the level of another
marker at the same pixel

Micro
environmental
marker level

Will make the cells close to each other having a similar level of
marker intensity

Perlin texture Adds noise like texture

Turbulent texture Redistribution of the marker level among neighboring pixels to
produce a turbulence effect. Works only on non-uniform marker
level intensity

Rescale Marker
level

Stretch out the marker level (for example to increase contrast)

The operations marked blue are the ones that set the initial distribution while the others
redistribute and refine this initial marker level distribution.

Subpopulation, object and marker definitions are needed for SimuCell to produce images.
However, there are a number of other optional effects that can be added to make more
realistic images:

SimuCell : Paint your cells

 5

Placement

Placement is used to determine how your cells will be distributed in an image (randomly,
clustered and so on). Currently, SimuCell provides:

• Clustered (clusters of cells)
• Nearby (cells placed near existing cells)
• Random (cells placed randomly)

Overlap

Overlap lets you define to what extent different cells can overlap, and how this should be
measured (on the nucleus, cytoplasm etc).

Composite

Compositing allows you to change the way a marker is rendered when there is an overlap
between two objects, both containing the marker. Currently, only one plugin exists
(Default compositing)

Image Artifacts

These allow you simulate imaging effects from microscopy image acquisition at a whole
image level. SimuCell currently provides:

• Add Basal Brightness
• Linear Image Gradient
• Radial Image Gradient

Cell Artifacts

Cell artifacts allow you to add effects (typically imaging/staining) on a cell by cell basis.
SimuCell currently provides:

• Cell Staining
• Out of Focus

SimuCell : Paint your cells

 6

Basic SimuCell Tutorial
Requirement:
SimuCell requires MATLAB version ≥ 2011a to work.

This tutorial is a step by step guide to build a synthetic image containing a single
subpopulation of cells. The cells contain only a nucleus and cytoplasm. They are
“stained” with a nuclear marker, a membrane marker and a cytoplasmic marker whose
intensity depends on the local cell density.

Step 0: Start SimuCell Interface
Open a MATLAB terminal and go to the SimuCell project folder and enter the following
commands:

>cd simucell/src

>simucell

>simucellGUI

Step 1: Define the Subpopulation(s)

Figure 2- SimuCell Startup Screen: 1 empty subpopulation is present

The SimuCell interface starts with a subpopulation pre-declared (Subpopulation 1). If you
want to work with more than one subpopulation, you add one by clicking on New in the
Subpopulation subpanel.

SimuCell : Paint your cells

 7

In this example, we will use only one subpopulation.

Step 2: Declare the Objects (nucleus and cytoplasm)
We add objects to our subpopulation by clicking on the New button in the Objects
subpanel.

Figure 3 - Create a new Object/Shape named Cyto

A new popup window will appear. Enter the name of the object (in our example, we will
use Cyto) and press OK.

The Cyto object is now visible in the main window in the Subpopulation table.

Figure 4 - Cyto Object/Shape is now visible in the Main table interface

SimuCell : Paint your cells

 8

Let’s create another object. Click on the button New of the subpanel Objects to add a new
object/shape.

Figure 5 - Create a new Object/Shape named Nuc

A new popup window appears. Enter the name of the object (in our example, we will use
Nuc) and press OK.

The Nuc object is now visible in the main window in the Subpopulation table.

Step 3: Define the Shapes Models for the Objects
Once all the objects types have been created, they can be defined in detail by choosing
appropriate models/parameters to render their shapes.

SimuCell : Paint your cells

 9

Figure 6 - Select the Object/Shape Nuc to define it in more detail

First, select the object Nuc and click Edit in the Objects subpanel.

A new window will pop up allowing you to define the Object/Shape Nuc.

Figure 7 - Select a Type, Model and set the parameters for the Object/Shape Nuc

Choose the type nucleus and the model Elliptical_nucleus_model and use the following
parameters:

• Nuclear Radius: 15
• Nuclear Eccentricity: 0.5 (a circle has eccentricity 0 , and a straight line 1)
• Extent of Variation: 0.1 (0 is no randomness, and 1 means completely random)

SimuCell : Paint your cells

 10

Then press Done.

A warning dialog will popup stating that the two objects/shapes are not connected to each
other. We are going to fix this by next by defining the object/shape Cyto to be dependent
of the object/shape Nuc. So for now, press Proceed Anyway! And let’s define the other
object/shape.

Figure 8 - When the Objects/Shape are not connected to each other, a warning dialog will pop
up to inform you that Object/Shape should be inter-connected to each other (e.g., Cytoplasm

should be centered around the Nucleus).

Select the object Cyto and click Edit in the Objects subpanel.

Figure 9 - Select a Type, Model and set the parameters for the Object/Shape Cyto

SimuCell : Paint your cells

 11

Choose the type cytoplasm and the model Elliptical_cytoplasm_model and use the
following parameters:

• Cell Radius: 50
• Cell Eccentricity: 0.5
• Centered Around: Nuc (tells SimuCell to draw the cytoplasm around the nucleus)
• Extent of Variation: 0.3

Then press Done.

Congratulations, you have just finished defining the objects/shapes used in this tutorial.

Step 4: Create the Markers
Next, you will create the markers used to “stain” the cells in our synthetic images.

Select an entry in the Subpopulation table and click on the New button in the Markers
subpanel.

A new pop-up window will appear. Enter the name of the marker (in our example, we
will use DAPI), select the marker color (in our example, we will use Blue) and press
OK.

Figure 10 - Create a new marker named DAPI and set it to be Blue in color

The subpopulation table should now display a new column named DAPI.

Repeat the previous step to create the markers MembMarker in Red and CytoMarker in
Green.

SimuCell : Paint your cells

 12

Figure 11 - Create a new marker named MembMarker (Red)

Figure 12 - Create a new marker named CytoMarker (Green)

Step 5: Define the Markers
Once the markers have been created, you will have to define them for each object/shape
by defining a sequence of operation(s). These operations will determine how SimuCell
renders the markers within the selected object/shape.

Start by selecting which object/marker pair you would like to define.

SimuCell : Paint your cells

 13

Define the marker DAPI for for the Object/Shape Nuc

In the subpopulation table, select the marker DAPI for the object/shape Nuc.

Figure 12 - Select the Marker DAPI for the Shape/Object Nuc

Then click Edit in the Markers subpanel. A new window to define the marker will
appear.

Figure 13 - Define the pair DAPI/Nuc by adding some operations

Click on Add in the Define Operation subpanel to add an operation. The default
operation, Constant_marker_level_operation, will appear in the operation list. We will
use this default operation with the following parameters:

SimuCell : Paint your cells

 14

• Mean Marker Level: 0.5
• Marker Level Sigma: 0.1

Figure 14 - Define the first operation for the pair DAPI/Nuc

Then click on the Save button to save this operation and press the Add button to add a
new one. Click on the operation list and select Perlin_Texture. This operation adds a
noise-like texture, and will make DAPI look more realistic on Nuc.

Figure 15 – Select the cell corresponding to the Marker/Object pair DAPI/Nuc

We will use the following parameters:

• Additive and Multiplicative: Multiply (scale the intensity rather than add to it)

SimuCell : Paint your cells

 15

• Noise Amplitude: 0.2
• Length Scale: 4 (2 – gives coarse variation , while 6 is very fine)
• Frequency FallOff: 0.5 (the weight given to higher frequency noise)
• Noise Type: Standard 1/f (the other choice is turbulent which is more abrupt)

Figure 16 - Set the Perlin Texture operation parameters for the pair DAPI/Nuc

Press the Save button to save this operation. The operation’s name on the operation list
will be changed from Constant_marker_level_operation to Perlin_Texture and the
parameters for this operation will be saved. Then press Done to go back to the main
interface.

You can now see that the marker DAPI for the object/shape Nuc has been defined.

SimuCell : Paint your cells

 16

Figure 17 - The Marker DAPI for the Object/Shape Nuc has been defined

Define the marker MembMarker for for the Object/Shape Cyto

In the subpopulation table, select the marker MembMarker for the object/shape Cyto.

Figure 18 - Select the Marker MembMarker for the Shape/Object Cyto

Then click Edit of the subpanel Markers. The window to define the marker will show up.

SimuCell : Paint your cells

 17

Figure 19 - Define the pair MembMarker/Cyto by adding operations

Click on Add in the subpanel Define Operation to add an operation. The default
operation Constant_marker_level_operation will appear in the operation list. We will
use first this operation and set the following parameters:

• Mean Marker Level: 0.7
• Marker Level Sigma: 0.2

Figure 20- Define the first operation for the pair MembMarker/Cyto

Then click on the save button to save this operation and press the add button to add a new
one. Click on the operation list and select Distance_to_edge_marker_gradient. This will

SimuCell : Paint your cells

 18

be used to concentrate the high intensity regions of the marker close to the edge so that
MembMarker will appear localized to the membrane

Figure 21 - Add the second operation Distance to edge marker gradient and set the

parameters

We will use the following parameters:

• Intensity FallOff Type: Exponential (functional form of intensity falloff with
distance to the edge)

• Fall Off Radius: 4 (the number of pixels over which the intensity falls by 1/e)
• Increasing Or Decreasing: Decreasing (higher close to the edge)

Press the Save button to save this last operation

SimuCell : Paint your cells

 19

Figure 22-Save the second operation

and then the button Done to go back to the main interface. You can see that the marker
MembMarker for the object/shape Cyto has been defined.

Define the marker CytoMarker for for the object/shape Cyto

In the subpopulation table, select the marker CytoMarker for the object/shape Cyto.

Figure 23 - Select the marker CytoMarker for the Object/Shape Cyto

Then click Edit of the subpanel Markers. The window to define the marker will appear.

SimuCell : Paint your cells

 20

Figure 24 - Define the Marker CytoMarker for the Object/Shape Cyto

Click on Add in the subpanel Define Operation to add an operation. The default
operation Constant_marker_level_operation will appear in the operation list. We won’t
use this one but instead the operation Cell_Density_Dependant_Marker_Level to
produce a cell density dependent marker intensity.

Figure 25 - Use Cell density dependant marker level as first operation of the pair

CytoMarker/Cyto

 The following parameters will be used:

• Increasing or Decreasing: Increasing (Intensity increases with cell density)

SimuCell : Paint your cells

 21

• Fall Off Radius: 40 (pixels over which intensity falls by 1/e)
• Functional Form Of Gradient: Gaussian (functional form of intensity falloff)
• Amplitude: 0 (minimum intensity level)
• Max Theoretical Intensity: 14

Figure 26- Define parameters for the first operation of the pair CytoMarker/Cyto

Then click on the save button to save this operation and press the add button to add a new
one. Click on the operation list and select Distance_to_shape_marker_gradient, so the
CytoMarker marker for Cyto object/shape will appear with a light gradient from the
nucleus.

SimuCell : Paint your cells

 22

Figure 27 - Use Distance to shape marker gradient for the second operation for the pair

CytoMarker/Cyto

The following parameters will be used:

• Distance To: Nuc
• Intensity FallOff Type: Gaussian
• Fall Off Radius: 30
• Increasing or Decreasing: Decreasing

Figure 28 - Define parameters for the second operation of the pair CytoMarker/Cyto

SimuCell : Paint your cells

 23

Then click on the Save button to save this operation and press the Add button to add the
last operation. Click on the operation list and select Perlin_Texture, so the CytoMarker
marker for Cyto object/shape will look more realistic.

Figure 29 - Use Perlin Texture for the last operation for the pair CytoMarker/Cyto

The following parameters will be used:

• Additive and Multiplicative: Multiply
• Noise Amplitude: 0.5
• Length Scale: 2
• Frequency FallOff: 1
• Noise Type: Standard 1/f

SimuCell : Paint your cells

 24

Figure 30 - Define parameters for the last operation of the pair CytoMarker/Cyto

Press the Save button to save this operation. The operation’s name on the operation list
will be changed from Constant_marker_level_operation to Perlin_Texture and the
parameters for this operation will be saved.

Figure 31 - Save the last operation

Then press Done to go back to the main interface. You can see that the marker
MembMarker for the object/shape Cyto has been defined.

SimuCell : Paint your cells

 25

Step 6: Save the SimuCell synthetic model
We are now almost done with this tutorial. You should first save your work by clicking
on the Save on the main interface.

Figure 32- Save the SimuCell model

Select a directory to save the files and enter a file name (don’t forget to add the extension
.m at this end), like simpleExample.m.

Two files will be saved, one .m which contains a MATLAB script that you could use to
generate your synthetic images, one .mat that contain the SimuCell MATLAB structure
that you can load from the SimuCell interface.

Figure 33 - SimuCell data file and script file save successfully!

SimuCell : Paint your cells

 26

Step 7: Run your SimuCell model to visualize your image
Press the Run button to run SimuCell and generate the image.

Figure 34 – Press the Run button to run your SimuCell model

A waiting bar will popup and after a pair of second/minute you should see your images.

Figure 35 - Your first cell images through SimuCell

To really see what’s going on, you can open the .m file and review the MATLAB script
to see how SimuCell operate.

SimuCell : Paint your cells

 27

For this tutorial, we didn’t discuss other parameters like placement, cell and images
artifact, overlapping and compositing. Since we didn’t define them, SimuCell will use
automatically default settings for those parameters.

SimuCell : Paint your cells

 28

SimuCell Scripts
Another way to generate synthetic images using SimuCell is to create and run scripts.

Some documented script examples are located in simucell/saved_data

simucellTestSimple.m The simple SimuCell example described in
the Basic SimuCell tutorial

polarized.m A more complex script producing two
subpopulation of polarized cells

microenv.m A script example to show how to add
micro-environment effect.

To run these scripts, use simucell.m (located in simucell/scr) that we used
previously in the tutorial.

>cd simucell/src

>result=simucell('simucellTestSimple')

Where 'simucellTestSimple' is the script name.

This will execute the simucellTestSimple.m script, plot one image and return the
result variable:

> result =

 subpopulation_numbers_of_cells: [10x1 double]

 RGB_image: [500x500x3 double]

 mask_of_object_by_cell: [1x10 struct]

 marker_on_object_by_cell: [1x10 struct]

 channel_images: [1x1 struct]

Here is a quick description of the output variable:

- Result.subpopulation_numbers_of_cells contains the subpopulation
number for each cell.

- result.RGB_image contains the RGB synthetic image generated using the
script.

- result.mask_of_object_by_cell contains the mask of each object
organized per cell.

- result.marker_of_object_by_cell contains the pixel intensity
distribution of every marker on each object organized per cell.

- result.channel_image contains the synthetic images organized by color
(channels).

Additional parameters may be used (see example below):

>simucell('simucellTestSimple', 'save_results', 2)

SimuCell : Paint your cells

 29

image Will additionally plot the
first RGB image result. If the
number of images is bigger than
one, it will also offer to save
these images.

save_results Will offer to save the result
into a *.mat file.

save_params This option won’t run the
SimuCell engine and will just
save the script parameters into
a .mat file that can be loaded
into the GUI interface using
the load button.

	1
	SimuCell Documentation
	SimCell Overview
	Introduction
	Overall
	Objects/Shapes
	Markers
	Placement
	Overlap
	Composite
	Image Artifacts
	Cell Artifacts

	Basic SimuCell Tutorial
	Requirement:
	Step 0: Start SimuCell Interface
	Step 1: Define the Subpopulation(s)
	Step 2: Declare the Objects (nucleus and cytoplasm)
	Step 3: Define the Shapes Models for the Objects
	Step 4: Create the Markers
	Step 5: Define the Markers
	Define the marker DAPI for for the Object/Shape Nuc
	Define the marker MembMarker for for the Object/Shape Cyto
	Define the marker CytoMarker for for the object/shape Cyto

	Step 6: Save the SimuCell synthetic model
	Step 7: Run your SimuCell model to visualize your image

	SimuCell Scripts

